Chapter 3

Riesz transforms on R^{d}

3.1 Fourier Integrals.

We now look at Fourier Transforms on R^{d}. If $f(x)$ is a function in $L_{1}\left(R^{d}\right)$ its Fourier transform $\widehat{f}(y)$ is defined by

$$
\begin{equation*}
\widehat{f}(y)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{i<x, y>} f(x) d x \tag{3.1}
\end{equation*}
$$

We denote by \mathcal{S} the class of all functions f on R^{d} that are infinitely differentiable such that the function and its derivitives of all orders decay faster than any power, i.e. for every $n_{1}, n_{2}, \ldots, n_{d} \geq 0$ and $k \geq 0$ there are constants $C_{n_{1}, n_{2}, \ldots, n_{d}, k}$ such that

$$
\left|\left[\left(\frac{d}{d x_{1}}\right)^{n_{1}}\left(\frac{d}{d x_{1}}\right)^{n_{2}} \cdots\left(\frac{d}{d x_{d}}\right)^{n_{d}} f\right](x)\right| \leq C_{n_{1}, n_{2}, \cdots, n_{d}, k}(1+\|x\|)^{-k}
$$

It is easy to show (left as an exercise) by repeated integration by parts that if $f \in \mathcal{S}$ so does \widehat{f}.

Theorem 3.1. The Fourier transform has the inverse

$$
\begin{equation*}
f(x)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-i<x, y>} \widehat{f}(y) d y \tag{3.2}
\end{equation*}
$$

proving that the Fourier transform is a one to one mapping of \mathcal{S} onto itself.
In addition the Fourier transform extends as a unitary map from $L_{2}\left(R^{d}\right)$ onto $L_{2}\left(R^{d}\right)$.

Proof. Clearly

$$
g(x)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-i<x, y>} \widehat{f}(y) d y
$$

is well defined as a function in \mathcal{S}. We only have to identify it. We compute g as

$$
\begin{aligned}
g(x) & =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-i<x, y>} \widehat{f}(y) d y \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-i<x, y>} \widehat{f}(y) e^{-\epsilon \frac{\|y\|^{2}}{2}} d y \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}}\left[\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{i<z, y>} f(z) d z\right] e^{-i<x, y>} e^{-\epsilon \frac{\|y\|^{2}}{2}} d y \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{2 \pi}\right)^{d} \int_{R^{d}} \int_{R^{d}} e^{i<z-x, y>} f(z) e^{-\epsilon \frac{\|y\|^{2}}{2}} d y d z \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{2 \pi}\right)^{d} \int_{R^{d}} f(z)\left[\int_{R^{d}} e^{i<z-x, y>} e^{-\epsilon \frac{\|y\|^{2}}{2}} d y\right] d z \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} \int_{R^{d}} f(z) e^{-\frac{\|z-x\|^{2}}{2 \epsilon}} d z \\
& =f(x)
\end{aligned}
$$

Here we have used the identity

$$
\frac{1}{\sqrt{2 \pi}} \int_{R} e^{i x y} e^{-\frac{x^{2}}{2}} d x=e^{-\frac{y^{2}}{2}}
$$

We now turn to the computation of L_{2} norm of \widehat{f}. We calculate it as

$$
\begin{aligned}
\|\widehat{f}\|_{2}^{2} & =\lim _{\epsilon \rightarrow 0} \int_{R_{d}}|\widehat{f}(y)|^{2} e^{-\frac{\epsilon\|y\|^{2}}{2}} d y \\
& =\lim _{\epsilon \rightarrow 0} \int_{R_{d}} \int_{R_{d}} \int_{R_{d}} f(x) \bar{f}(z) e^{i<x-z, y>} e^{-\frac{\epsilon\|y\|^{2}}{2}} d y d x d z \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} \int_{R_{d}} \int_{R_{d}} f(x) \bar{f}(z) e^{-\frac{\|x-z\|^{2}}{2 \epsilon}} d x d z \\
& =\lim _{\epsilon \rightarrow 0} \int_{R^{d}} f(x)\left[K_{\epsilon} \bar{f}\right](x) d x \\
& =\int_{R^{d}}|f(x)|^{2} d x
\end{aligned}
$$

Since the $f \rightarrow \widehat{f}$ preserves the L_{2} norm and is onto from $\mathcal{S} \rightarrow \mathcal{S}$, it extends to the completion L_{2} as a unitary map.

We see that the Fourier transform is a bounded linear map from L_{1} to L_{∞} as well as L_{2} to L_{2} with corresponding bounds $C=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d}$ and 1. By the Riesz-Thorin interpolation theorem (see the exercise in Chapter 2) the Fourier transform is bounded from L_{p} into $L_{\frac{p}{p-1}}$ for $1 \leq p \leq 2$. If $\frac{1}{p}=$ 1. $t+\frac{1}{2}(1-t)$ then $\frac{1}{2}(1-t)=1-\frac{1}{p}=\frac{p-1}{p}$. See exercise to show that, for $f \in L_{p}$ with $p>2$, the Fourier Transform need not exist.

For convolution operators of the form

$$
\begin{equation*}
(T f)(x)=(k * f)(x)=\int_{R^{d}} k(x-y) f(y) d y \tag{3.3}
\end{equation*}
$$

we want to estimate $\|T\|_{p}$, the operator norm from L_{p} to L_{p} for $1 \leq p \leq \infty$. As before for $p=1, \infty$,

$$
\|T\|_{p}=\int_{R^{d}}|k(y)| d y
$$

Let us suppose that for some constant C,

1. The Fourier transform $\widehat{k}(y)$ of $k(\cdot)$ satisfies

$$
\begin{equation*}
\sup _{y \in R^{d}}|\widehat{k}(y)| \leq C<\infty \tag{3.4}
\end{equation*}
$$

2. In addition,

$$
\begin{equation*}
\sup _{x \in R^{d}} \int_{\{y:\|x-y\| \geq C\|x\|\}}|k(y-x)-k(y)| d y \leq C<\infty \tag{3.5}
\end{equation*}
$$

We will estimate $\|T\|_{p}$ in terms of C. The main step is to establish a weak type $(1,1)$ inequality. Then we will use the interpolation theorems to get boundedness in the range $1<p \leq 2$ and duality to reach the interval $2 \leq p<\infty$.

Theorem 3.2. The function $g(x)=(T f)(x)=(k * f)(x)$ satisfies a weak type $(1,1)$ inequality

$$
\begin{equation*}
\mu\{x:|g(x)| \geq \ell\} \leq C_{0} \frac{\|f\|_{1}}{\ell} \tag{3.6}
\end{equation*}
$$

with a constant C_{0} that depends only on C.
We first prove a decomposition lemma that we will need for the proof of the theorem.

Lemma 3.3. Given any open set $G \in R^{d}$ of finite Lebesgue measure we can find a countable set of balls $\left\{S\left(x_{j}, r_{j}\right)\right\}$ with the following properties. The balls are all disjoint. $G=\cup_{j} S\left(x_{j}, 3 r_{j}\right)$ is the countable union of balls with the same centers but three times the radius. More over there is a number $k_{1}(d)$ that depends only on the dimension such that each point of G is covered at most $(96)^{d}$ times by the covering $G=\cup_{j} S\left(x_{j}, 3 r_{j}\right)$. Finally each of the balls $S\left(x_{j}, 5 r_{j}\right)$ has a nonempty intersection with G^{c}.

Basically, the lemma says that it is possible to write G as a nearly disjoint countable union of balls each having a radius that is comparable to the distance of its center to the boundary.

Proof. Suppose G is an open set in the plane of finite volume.
Let $d(x)=d\left(x, G^{c}\right)$ be the distance from x to G^{c} or the boundary of G. Let $d_{0}=\sup _{x \in G} d(x)$. Since the volume of G is finite, G cannot contain any large balls and consequently d_{0} cannot be infinite.

We consider balls $S(x, r(x))$ around x of radius $r(x)=\frac{d(x)}{4}$. They are contained in G and provide a covering of G as x varies over G. All these balls have the property that $S(x, 3 r(x)) \subset G$ and $S(x, 5 r(x))$ intersects G^{c}.

We proceed to select a countable collection $\left\{S\left(x_{i}, r\left(x_{i}\right)\right)\right\}$ from $\{S(x, r(x)\}$ that are disjoint while $\cup_{i} S\left(x_{i}, 3 r\left(x_{i}\right)\right)=G$.

We choose x_{1} such that $d\left(x_{1}\right)>\frac{d_{0}}{2}$. Having chosen x_{1}, \ldots, x_{k} the choice of x_{k+1} is made as follows. We consider the balls $S\left(x_{i}, r\left(x_{i}\right)\right)$ for $i=1,2, \ldots, k$. Look at the set $G_{k}=\left\{x: S(x, r(x)) \cap S\left(x_{i}, r\left(x_{i}\right)\right)=\emptyset\right.$ for $\left.1 \leq i \leq k\right\}$ and define $d_{k}=\sup _{x \in G_{k}} d(x)$. We pick $x_{k+1} \in G_{k}$ such that $d\left(x_{k+1}\right)>\frac{d_{k}}{2}$. We proceed in this fashion to get a countable collection of balls $\left\{S\left(x_{i}, r\left(x_{i}\right)\right)\right\}$.

By construction, they are disjoint balls contained in the set G of finite volume and therefore $r\left(x_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Since, $d_{i} \leq 2 d\left(x_{i+1}\right) \leq 8 r\left(x_{i+1}\right)$ it follows that $d_{i} \rightarrow 0$ as $i \rightarrow \infty$. Every $S\left(x_{i}, 5 r\left(x_{i}\right)\right)$ intersects G^{c}.

We now examine how much of G the balls $\left\{B\left(x_{i}, r\left(x_{i}\right)\right)\right\}$ cover. First we note that

$$
G_{0} \supset G_{1} \supset \cdots \supset G_{k} \supset G_{k+1} \supset \cdots
$$

We claim that $\cap_{k} G_{k}=\emptyset$. If not, let $x \in G_{k}$ for every k. Then $d_{k}=$ $\sup _{y \in G_{k}} d(y) \geq d(x)>0$ for every k. This contradicts the convergence of d_{k} to 0 .

Since $x \in G_{0}=G$, we can find $k \geq 1$ such that $x \in G_{k-1}$ but $x \notin G_{k}$. Then $S(x, r(x))$ must intersect $S\left(x_{k}, r\left(x_{k}\right)\right)$ giving us the inequality

$$
\left|x-x_{k}\right|<r(x)+r\left(x_{k}\right) \leq \frac{d(x)}{4}+r\left(x_{k}\right) \leq \frac{d_{k-1}}{4}+r\left(x_{k}\right) \leq \frac{d\left(x_{k}\right)}{2}+r\left(x_{k}\right)=3 r\left(x_{k}\right)
$$

Clearly $S\left(x_{k}, 3 r\left(x_{k}\right)\right)$ will contain x. Since $3 r(x)<d(x)$ the enlarged ball is still within G. This means $G=\cup_{k} S\left(x_{k}, 3 r\left(x_{k}\right)\right)$.

Now we will bound the number of times a point x can be covered by $\left\{S\left(x_{k}, 3 r\left(x_{k}\right)\right\}\right.$. Let for some $k,\left|x-x_{k}\right|<3 r\left(x_{k}\right)$. Then by the triangle inequality

$$
\left|d(x)-d\left(x_{k}\right)\right| \leq 3 r\left(x_{k}\right)
$$

or equivalently (recall $r(x)=\frac{d(x)}{4}$)

$$
\left|r(x)-r\left(x_{k}\right)\right| \leq \frac{3}{4} r\left(x_{k}\right)
$$

This implies that for the ratio $\left|\frac{r(x)}{r\left(x_{k}\right)}-1\right| \leq \frac{3}{4}$ we have $\frac{1}{4} \leq \frac{r(x)}{r\left(x_{k}\right)} \leq \frac{7}{4}$ In particular any ball $S\left(x_{k}, 3 r\left(x_{k}\right)\right)$ that covers x, must have its center with in a distance of $3 r\left(x_{k}\right) \leq 12 r(x)$ of x and the corresponding $r\left(x_{k}\right)$ must be in
the range $\frac{4}{7} r(x) \leq r\left(x_{k}\right) \leq 4 r(x)$. The balls $S\left(x_{k}, r\left(x_{k}\right)\right)$ are then contained in $S(x, 24 r(x))$ are disjoint and have a radius of at least $\frac{4}{7} r(x)$. There can be at most $k_{1}(d)=(42)^{d}$ of them by considering the total volume. We can choose our norm in R^{d} to be $\max _{i}\left|x_{i}\right|$ and force the spheres to be cubes.

Proof of theorem. The proof is similar to the one-dimensional case with some modifications.

1. We let G_{ℓ} be the open set where the maximal function $M_{f}(x)$ satisfies $\left|M_{f}(x)\right|>\ell$. From the maximal inequality

$$
\begin{equation*}
\mu\left[G_{\ell}\right] \leq C(d) \frac{\|f\|_{1}}{\ell} \tag{3.7}
\end{equation*}
$$

2. We write $G_{\ell}=\cup_{i} B_{i}=\cup_{i} S\left(x_{i}, 3 r\left(x_{i}\right)\right)$, a countable union of spheres according to the lemma.
3. If we let

$$
\phi(x)=\sum_{i} \mathbf{1}_{B_{i}}(x)
$$

then $1 \leq \phi(x) \leq k_{1}(d)$ on G_{ℓ}.
4. Let us define a weighted average m_{i} of $f(y)$ on B_{i} by

$$
\begin{equation*}
\int_{B_{i}}\left[f(y)-m_{i}\right] \frac{d y}{\phi(y)}=0 \tag{3.8}
\end{equation*}
$$

and write

$$
\begin{align*}
f(x)= & f(x) \mathbf{1}_{G_{\ell}^{c}}(x)+\frac{1}{\phi(x)} \sum_{i} f(x) \mathbf{1}_{B_{i}}(x) \\
= & {\left[f(x) \mathbf{1}_{G_{\ell}^{c}}(x)+\frac{1}{\phi(x)} \sum_{i} m_{i} \mathbf{1}_{B_{i}}(x)\right] } \tag{3.9}\\
& \quad+\frac{1}{\phi(x)} \sum_{i}\left[f(x)-m_{i}\right] \mathbf{1}_{B_{i}}(x) \\
= & h_{0}(x)+\sum_{i} h_{i}(x) \tag{3.10}
\end{align*}
$$

5. For any sphere B_{i} with center x_{i} and radius $3 r\left(x_{i}\right)$ there is a sphere with radius $5\left(r\left(x_{i}\right)\right)$ with the same center that contains a point $x_{i}^{\prime} \in G_{\ell}^{c}$ with $\left|M_{f}\left(x_{i}^{\prime}\right)\right| \leq \ell$. The sphere $\widehat{B}_{i}=S\left(x_{i}^{\prime}, 8 r\left(x_{i}\right)\right)$ contains B_{i}. Since $1 \leq \phi(y) \leq k_{1}(d)$ on G_{ℓ}

$$
\begin{aligned}
\left|m_{i}\right| & \leq\left[\int_{B_{i}} \frac{|f(y)|}{\phi(y)} d y\right]\left[\int_{B_{i}} \frac{1}{\phi(y)} d y\right]^{-1} \\
& \leq k_{1}(d) \frac{1}{\mu\left(B_{i}\right)} \int_{B_{i}}|f(y)| d y \\
& =k_{1}(d)\left(\frac{8}{3}\right)^{d} \frac{1}{\mu\left(\widehat{B}_{i}\right)} \int_{B_{i}}|f(y)| d y \leq k_{2}(d) \\
& \leq k_{2}(d) \frac{1}{\mu\left(\widehat{B}_{i}\right)} \int_{\widehat{B_{i}}}|f(y)| d y \\
& \leq k_{2}(d) M_{f}\left(x_{i}^{\prime}\right) \\
& \leq k_{2}(d) \ell
\end{aligned}
$$

It follows that on G_{ℓ}

$$
\frac{1}{\phi(x)} \sum_{i} m_{i} \mathbf{1}_{B_{i}}(x) \leq k_{2}(d) \ell
$$

Moreover on $G_{\ell}^{c},|f(x)| \leq M_{f}(x) \leq \ell$. Since $k_{2}(d) \geq 1$

$$
\begin{equation*}
\left\|h_{0}\right\|_{\infty} \leq \max \left\{1, k_{2}(d)\right\} \ell=k_{2}(d) \ell \tag{3.11}
\end{equation*}
$$

On the other hand $\phi(x) \geq 1$ on G_{ℓ} and

$$
\begin{align*}
\left\|h_{0}\right\|_{1} & \leq\|f\|_{1}+k_{2}(d) \ell \sum_{i} \mu\left[B_{i}\right] \\
& \leq\|f\|_{1}+k_{2}(d) \ell \mu\left[G_{\ell}\right] \\
& \leq\left(1+k_{2}(d)\right)\|f\|_{1} \tag{3.12}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\left\|h_{0}\right\|_{2}^{2} \leq\left\|h_{0}\right\|_{1}\left\|h_{0}\right\|_{\infty} \leq k_{3}(d) \ell\|f\|_{1} \tag{3.13}
\end{equation*}
$$

From the boundedness of T from L_{2} to L_{2} this gives

$$
\begin{equation*}
\mu\left\{x:\left|\left(T h_{0}\right)(x)\right| \geq \ell\right\} \leq \frac{\left\|T h_{0}\right\|_{2}^{2}}{\ell^{2}} \leq C^{2} k_{3}(d) \frac{\|f\|_{1}}{\ell} \tag{3.14}
\end{equation*}
$$

where C is the bound on $|\widehat{k}|$ from (3.4)
6. We now turn our attention to the functions $\left\{h_{j}\right\}$

$$
\begin{align*}
w(x) & =\sum_{i}\left(T h_{i}\right)(x)=\sum_{i} \int_{B_{i}}\left[f(y)-m_{j}\right] k(x-y) \frac{d y}{\phi(y)} \\
& =\sum_{i} \int_{B_{i}}\left[f(y)-m_{i}\right]\left[k(x-y)-k\left(x-x_{i}\right)\right] \frac{d y}{\phi(y)} \\
|w(x)| & \leq \sum_{i} \int_{B_{i}}\left|f(y)-m_{i}\right|\left|k(x-y)-k\left(x-x_{i}\right)\right| d y \tag{3.15}
\end{align*}
$$

We estimate $|w(x)|$ for $x \notin \cup_{i} U_{i}$ where U_{i} is the sphere with the same center x_{i} as B_{i} but enlarged by a factor $C+1$. In particular if $y \in B_{i}$ and $x \in U_{i}^{c}$, then $|y-x| \geq\left|x-x_{i}\right|-\left|y-x_{i}\right| \geq C\left|y-x_{i}\right|$.

$$
\begin{align*}
\int_{\cap_{i} U_{i}^{c}}|w(x)| d x & \leq \sum_{i} \int_{\cap_{i} U_{i}^{c}}\left[\int_{B_{i}}\left|f(y)-m_{j}\right|\left|k(x-y)-k\left(x-x_{i}\right)\right| d y\right] d x \\
& \leq \sum_{i} \int_{B_{i}}\left|f(y)-m_{i}\right|\left[\int_{E_{i}}\left|k(x-y)-k\left(x-x_{i}\right)\right| d x\right] d y \tag{3.16}
\end{align*}
$$

where $E_{i} \subset\left\{x:|x-y| \geq C\left|y-x_{i}\right|\right\}$. Therefore,

$$
\begin{align*}
& \int_{E_{i}}\left|k(x-y)-k\left(x-x_{i}\right)\right| d x \\
& \quad \leq \sup _{y, i} \int_{\left\{x:|x-y| \geq C\left|y-x_{i}\right|\right\}}\left|k(x-y)-k\left(x-x_{i}\right)\right| d x \\
& \quad \leq \sup _{y} \int_{\{x:|x-y| \geq C|y|\}}|k(x-y)-k(x)| d x \\
& \quad \leq C \tag{3.17}
\end{align*}
$$

giving us the estimate

$$
\begin{align*}
\int_{\cap_{i} U_{i}^{c}}|w(x)| d x & \leq C \sum_{i} \int_{B_{i}}\left|f(y)-m_{i}\right| d y \\
& \leq C\left(\|f\|_{1}+\left[\sup _{i} m_{i}\right] \sum_{i} \mu\left[B_{i}\right]\right) \\
& \leq C\left[\|f\|_{1}+k_{2}(d) \ell \mu\left(G_{\ell}\right)\right] \tag{3.18}\\
& \left.\leq k_{3}(d)\|f\|_{1}\right] \tag{3.19}
\end{align*}
$$

7. We can estimate $\left.\mu\left(\cup_{i} U_{i}\right)\right) \leq \sum_{i} \mu\left(U_{i}\right)$ by

$$
\sum_{i} \mu\left(U_{i}\right) \leq k_{4}(d) \sum_{i} \mu\left(B_{i}\right) \leq k_{5}(d) \mu\left(G_{\ell}\right) \leq k_{6}(d) \frac{\|f\|_{1}}{\ell}
$$

8. We put the pieces together and we are done.
