
Chapter 3

Riesz transforms on Rd

3.1 Fourier Integrals.

We now look at Fourier Transforms on Rd. If f(x) is a function in L1(Rd)
its Fourier transform f̂(y) is defined by

f̂(y) =

(
1√
2π

)d ∫

Rd

ei <x,y>f(x)dx (3.1)

We denote by S the class of all functions f on Rd that are infinitely differen-
tiable such that the function and its derivitives of all orders decay faster than
any power, i.e. for every n1, n2, . . . , nd ≥ 0 and k ≥ 0 there are constants
Cn1,n2,...,nd,k such that

|[( d

dx1
)n1(

d

dx1
)n2 . . . (

d

dxd

)ndf ](x)| ≤ Cn1,n2,··· ,nd,k(1 + ∥x∥)−k

It is easy to show (left as an exercise) by repeated integration by parts that
if f ∈ S so does f̂ .

Theorem 3.1. The Fourier transform has the inverse

f(x) =

(
1√
2π

)d ∫

Rd

e−i <x,y>f̂(y)dy (3.2)

proving that the Fourier transform is a one to one mapping of S onto itself.
In addition the Fourier transform extends as a unitary map from L2(Rd)

onto L2(Rd).
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Proof. Clearly

g(x) =

(
1√
2π

)d ∫

Rd

e−i <x,y>f̂(y)dy

is well defined as a function in S. We only have to identify it. We compute
g as

g(x) =

(
1√
2π

)d ∫

Rd

e−i <x,y>f̂(y)dy

= lim
ϵ→0

(
1√
2π

)d ∫

Rd

e−i <x,y>f̂(y)e−ϵ
∥y∥2

2 dy

= lim
ϵ→0

(
1√
2π

)d ∫

Rd

[(
1√
2π

)d ∫

Rd

ei <z,y>f(z)dz

]
e−i <x,y>e−ϵ

∥y∥2

2 dy

= lim
ϵ→0

(
1

2π

)d ∫

Rd

∫

Rd

ei <z−x,y>f(z)e−ϵ
∥y∥2

2 dydz

= lim
ϵ→0

(
1

2π

)d ∫

Rd

f(z)

[ ∫

Rd

ei <z−x,y>e−ϵ
∥y∥2

2 dy

]
dz

= lim
ϵ→0

(
1√
2πϵ

)d ∫

Rd

f(z)e−
∥z−x∥2

2ϵ dz

= f(x)

Here we have used the identity

1√
2π

∫

R

ei xye−
x2

2 dx = e−
y2

2

We now turn to the computation of L2 norm of f̂ . We calculate it as
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∥f̂∥22 = lim
ϵ→0

∫

Rd

|f̂(y)|2e−
ϵ∥y∥2

2 dy

= lim
ϵ→0

∫

Rd

∫

Rd

∫

Rd

f(x)f̄(z)ei<x−z,y>e−
ϵ∥y∥2

2 dydxdz

= lim
ϵ→0

(
1√
2πϵ

)d ∫

Rd

∫

Rd

f(x)f̄(z)e−
∥x−z∥2

2ϵ dxdz

= lim
ϵ→0

∫

Rd

f(x)[Kϵf̄ ](x)dx

=

∫

Rd

|f(x)|2dx

Since the f → f̂ preserves the L2 norm and is onto from S → S, it extends
to the completion L2 as a unitary map.

We see that the Fourier transform is a bounded linear map from L1 to
L∞ as well as L2 to L2 with corresponding bounds C = ( 1√

2π
)d and 1. By

the Riesz-Thorin interpolation theorem ( see the exercise in Chapter 2) the
Fourier transform is bounded from Lp into L p

p−1
for 1 ≤ p ≤ 2. If 1

p
=

1.t + 1
2(1 − t) then 1

2(1 − t) = 1 − 1
p
= p−1

p
. See exercise to show that, for

f ∈ Lp with p > 2, the Fourier Transform need not exist.

For convolution operators of the form

(Tf)(x) = (k ∗ f)(x) =
∫

Rd

k(x− y)f(y)dy (3.3)

we want to estimate ∥T∥p, the operator norm from Lp to Lp for 1 ≤ p ≤ ∞.
As before for p = 1,∞,

∥T∥p =
∫

Rd

|k(y)|dy.

Let us suppose that for some constant C,

1. The Fourier transform k̂(y) of k(·) satisfies

sup
y∈Rd

|k̂(y)| ≤ C < ∞ (3.4)
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2. In addition,

sup
x∈Rd

∫

{y:∥x−y∥≥C∥x∥}
|k(y − x)− k(y)|dy ≤ C < ∞ (3.5)

We will estimate ∥T∥p in terms of C. The main step is to establish a
weak type (1, 1) inequality. Then we will use the interpolation theorems to
get boundedness in the range 1 < p ≤ 2 and duality to reach the interval
2 ≤ p < ∞.

Theorem 3.2. The function g(x) = (Tf)(x) = (k ∗ f)(x) satisfies a weak
type (1, 1) inequality

µ{x : |g(x)| ≥ ℓ} ≤ C0
∥f∥1
ℓ

(3.6)

with a constant C0 that depends only on C.

We first prove a decomposition lemma that we will need for the proof of
the theorem.

Lemma 3.3. Given any open set G ∈ Rd of finite Lebesgue measure we can
find a countable set of balls {S(xj, rj)} with the following properties. The
balls are all disjoint. G = ∪jS(xj , 3rj) is the countable union of balls with
the same centers but three times the radius. More over there is a number k1(d)
that depends only on the dimension such that each point of G is covered at
most (96)d times by the covering G = ∪jS(xj , 3rj). Finally each of the balls
S(xj, 5rj) has a nonempty intersection with Gc.

Basically, the lemma says that it is possible to write G as a nearly disjoint
countable union of balls each having a radius that is comparable to the
distance of its center to the boundary.

Proof. Suppose G is an open set in the plane of finite volume.

Let d(x) = d(x,Gc) be the distance from x to Gc or the boundary of G.
Let d0 = supx∈G d(x). Since the volume of G is finite, G cannot contain any
large balls and consequently d0 cannot be infinite.

We consider balls S(x, r(x)) around x of radius r(x) = d(x)
4 . They are

contained in G and provide a covering of G as x varies over G. All these
balls have the property that S(x, 3r(x)) ⊂ G and S(x, 5r(x)) intersects Gc.
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We proceed to select a countable collection {S(xi, r(xi))} from {S(x, r(x)}
that are disjoint while ∪iS(xi, 3r(xi)) = G.

We choose x1 such that d(x1) >
d0
2 . Having chosen x1, . . . , xk the choice of

xk+1 is made as follows. We consider the balls S(xi, r(xi)) for i = 1, 2, . . . , k.
Look at the set Gk = {x : S(x, r(x)) ∩ S(xi, r(xi)) = ∅ for 1 ≤ i ≤ k} and
define dk = supx∈Gk

d(x). We pick xk+1 ∈ Gk such that d(xk+1) >
dk
2 . We

proceed in this fashion to get a countable collection of balls {S(xi, r(xi))}.
By construction, they are disjoint balls contained in the set G of finite

volume and therefore r(xi) → 0 as i → ∞. Since, di ≤ 2d(xi+1) ≤ 8r(xi+1)
it follows that di → 0 as i → ∞. Every S(xi, 5r(xi)) intersects Gc.

We now examine how much of G the balls {B(xi, r(xi))} cover. First we
note that

G0 ⊃ G1 ⊃ · · · ⊃ Gk ⊃ Gk+1 ⊃ · · ·

We claim that ∩kGk = ∅. If not, let x ∈ Gk for every k. Then dk =
supy∈Gk

d(y) ≥ d(x) > 0 for every k. This contradicts the convergence of dk
to 0.

Since x ∈ G0 = G, we can find k ≥ 1 such that x ∈ Gk−1 but x /∈ Gk.
Then S(x, r(x)) must intersect S(xk, r(xk)) giving us the inequality

|x−xk| < r(x)+r(xk) ≤
d(x)

4
+r(xk) ≤

dk−1

4
+r(xk) ≤

d(xk)

2
+r(xk) = 3r(xk)

Clearly S(xk, 3r(xk)) will contain x. Since 3r(x) < d(x) the enlarged ball is
still within G. This means G = ∪kS(xk, 3r(xk)).

Now we will bound the number of times a point x can be covered by
{S(xk, 3r(xk)}. Let for some k, |x − xk| < 3r(xk). Then by the triangle
inequality

|d(x)− d(xk)| ≤ 3r(xk)

or equivalently (recall r(x) = d(x)
4 )

|r(x)− r(xk)| ≤
3

4
r(xk)

This implies that for the ratio | r(x)
r(xk)

− 1| ≤ 3
4 we have 1

4 ≤ r(x)
r(xk)

≤ 7
4 In

particular any ball S(xk, 3r(xk)) that covers x, must have its center with in
a distance of 3r(xk) ≤ 12r(x) of x and the corresponding r(xk) must be in
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the range 4
7r(x) ≤ r(xk) ≤ 4r(x). The balls S(xk, r(xk)) are then contained

in S(x, 24r(x)) are disjoint and have a radius of at least 4
7r(x). There can

be at most k1(d) = (42)d of them by considering the total volume. We can
choose our norm in Rd to be maxi |xi| and force the spheres to be cubes.

Proof of theorem. The proof is similar to the one-dimensional case with some
modifications.

1. We let Gℓ be the open set where the maximal function Mf (x) satisfies
|Mf(x)| > ℓ. From the maximal inequality

µ[Gℓ] ≤ C(d)
∥f∥1
ℓ

(3.7)

2. We write Gℓ = ∪iBi = ∪iS(xi, 3r(xi)), a countable union of spheres
according to the lemma.

3. If we let
φ(x) =

∑

i

1Bi
(x)

then 1 ≤ φ(x) ≤ k1(d) on Gℓ.

4. Let us define a weighted average mi of f(y) on Bi by
∫

Bi

[f(y)−mi]
dy

φ(y)
= 0 (3.8)

and write

f(x) = f(x)1Gc
ℓ
(x) +

1

φ(x)

∑

i

f(x)1Bi
(x)

=

[
f(x)1Gc

ℓ
(x) +

1

φ(x)

∑

i

mi1Bi
(x)

]
(3.9)

+
1

φ(x)

∑

i

[f(x)−mi]1Bi
(x)

= h0(x) +
∑

i

hi(x) (3.10)
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5. For any sphere Bi with center xi and radius 3r(xi) there is a sphere
with radius 5(r(xi)) with the same center that contains a point x′

i ∈ Gc
ℓ

with |Mf(x′
i)| ≤ ℓ. The sphere B̂i = S(x′

i, 8r(xi)) contains Bi. Since
1 ≤ φ(y) ≤ k1(d) on Gℓ

|mi| ≤
[ ∫

Bi

|f(y)|
φ(y)

dy

][ ∫

Bi

1

φ(y)
dy

]−1

≤ k1(d)
1

µ(Bi)

∫

Bi

|f(y)|dy

= k1(d)
(8
3

)d 1

µ(B̂i)

∫

Bi

|f(y)|dy ≤ k2(d)

≤ k2(d)
1

µ(B̂i)

∫

B̂i

|f(y)|dy

≤ k2(d)Mf (x
′
i)

≤ k2(d)ℓ

It follows that on Gℓ

1

φ(x)

∑

i

mi1Bi
(x) ≤ k2(d)ℓ

Moreover on Gc
ℓ, |f(x)| ≤ Mf (x) ≤ ℓ. Since k2(d) ≥ 1

∥h0∥∞ ≤ max{1, k2(d)}ℓ = k2(d)ℓ (3.11)

On the other hand φ(x) ≥ 1 on Gℓ and

∥h0∥1 ≤ ∥f∥1 + k2(d)ℓ
∑

i

µ[Bi]

≤ ∥f∥1 + k2(d)ℓµ[Gℓ]

≤ (1 + k2(d))∥f∥1 (3.12)

and therefore
∥h0∥22 ≤ ∥h0∥1∥h0∥∞ ≤ k3(d)ℓ∥f∥1 (3.13)

From the boundedness of T from L2 to L2 this gives

µ{x : |(Th0)(x)| ≥ ℓ} ≤ ∥Th0∥22
ℓ2

≤ C2k3(d)
∥f∥1
ℓ

(3.14)

where C is the bound on |k̂| from (3.4)
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6. We now turn our attention to the functions {hj}

w(x) =
∑

i

(Thi)(x) =
∑

i

∫

Bi

[f(y)−mj ]k(x− y)
dy

φ(y)

=
∑

i

∫

Bi

[f(y)−mi][k(x− y)− k(x− xi)]
dy

φ(y)

|w(x)| ≤
∑

i

∫

Bi

|f(y)−mi||k(x− y)− k(x− xi)|dy (3.15)

We estimate |w(x)| for x /∈ ∪iUi where Ui is the sphere with the same
center xi as Bi but enlarged by a factor C + 1. In particular if y ∈ Bi

and x ∈ U c
i , then |y − x| ≥ |x− xi|− |y − xi| ≥ C|y − xi|.

∫

∩iU
c
i

|w(x)|dx ≤
∑

i

∫

∩iU
c
i

[

∫

Bi

|f(y)−mj ||k(x− y)− k(x− xi)|dy]dx

≤
∑

i

∫

Bi

|f(y)−mi|[
∫

Ei

|k(x− y)− k(x− xi)|dx]dy

(3.16)

where Ei ⊂ {x : |x− y| ≥ C|y − xi|}. Therefore,

∫

Ei

|k(x− y)− k(x− xi)|dx

≤ sup
y,i

∫

{x:|x−y|≥C|y−xi|}
|k(x− y)− k(x− xi)|dx

≤ sup
y

∫

{x:|x−y|≥C|y|}
|k(x− y)− k(x)|dx

≤ C (3.17)

giving us the estimate
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∫

∩iU
c
i

|w(x)|dx ≤ C
∑

i

∫

Bi

|f(y)−mi|dy

≤ C(∥f∥1 + [sup
i

mi]
∑

i

µ[Bi])

≤ C[∥f∥1 + k2(d)ℓµ(Gℓ)] (3.18)

≤ k3(d)∥f∥1] (3.19)

7. We can estimate µ(∪iUi)) ≤
∑

i µ(Ui) by

∑

i

µ(Ui) ≤ k4(d)
∑

i

µ(Bi) ≤ k5(d)µ(Gℓ) ≤ k6(d)
∥f∥1
ℓ

8. We put the pieces together and we are done.


