Chapter 3

Riesz transforms on R¢

3.1 Fourier Integrals.

We now look at Fourier Transforms on Re. If f(z) is a function in L;(R?)

~

its Fourier transform f(y) is defined by

f= (=) [ s 3.1)

We denote by S the class of all functions f on R? that are infinitely differen-
tiable such that the function and its derivitives of all orders decay faster than

any power, i.e. for every ni,no,...,ng > 0 and k > 0 there are constants
Chr mo,....ngk Such that
d d d
— )" (=) ()" < Chymg mg k(1 -k
()™ )™ - (o A1) < Corae a1+ )

It is easy to show (left as an exercise) by repeated integration by parts that
if f €S so does f.

Theorem 3.1. The Fourier transform has the inverse

1= (=) [ 32)

proving that the Fourier transform is a one to one mapping of S onto itself.
In addition the Fourier transform extends as a unitary map from Lo(R®)
onto Lo(RY).
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Proof. Clearly

g(x) = (\/%)d/m e <> fy)dy

is well defined as a function in §. We only have to identify it. We compute
g as
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= lim f(z)e” dz
e—0 2me Rd
= f(x)
Here we have used the identity
2
i~ 7 —e 5
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We now turn to the computation of Ly norm of j? We calculate it as
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Since the f — fpreserves the Lo norm and is onto from & — S, it extends
to the completion L, as a unitary map. O

We see that the Fourier transform is a bounded linear map from L; to
Lo as well as Ly to Ly with corresponding bounds C' = (\/%)d and 1. By
the Riesz-Thorin interpolation theorem ( see the exercise in Chapter 2) the
Fourier transform is bounded from L, into L% for 1 <p <2 If % =

1t+2(1—¢) then 3(1—t) =1— % = ijl. See exercise to show that, for
f € L, with p > 2, the Fourier Transform need not exist.

For convolution operators of the form

(TH)a) = (b= £)a) = [ k=) )y (33

we want to estimate ||T'||,, the operator norm from L, to L, for 1 < p < oo.
As before for p =1, 0o,

7= [ kw)ldy
R
Let us suppose that for some constant C,

1. The Fourier transform E(y) of k(-) satisfies

sup |E(y)| <C <o (3.4)

yER
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2. In addition,

sup / |k(y —x) — k(y)|dy < C < 0 (3.5)
{y:llz—ylI=C|=||}

zER4

We will estimate ||7']|, in terms of C. The main step is to establish a
weak type (1,1) inequality. Then we will use the interpolation theorems to
get boundedness in the range 1 < p < 2 and duality to reach the interval
2 <p<oo.

Theorem 3.2. The function g(x) = (T'f)(z) = (k x f)(x) satisfies a weak
type (1, 1) inequality

1/ 1l
0

ple g(x)| > £} < Co (3.6)

with a constant Cy that depends only on C.

We first prove a decomposition lemma that we will need for the proof of
the theorem.

Lemma 3.3. Given any open set G € R? of finite Lebesgue measure we can
find a countable set of balls {S(x;,r;)} with the following properties. The
balls are all disjoint. G = U;S(x;,3r;) is the countable union of balls with
the same centers but three times the radius. More over there is a number ki(d)
that depends only on the dimension such that each point of G is covered at
most (96)¢ times by the covering G = U;S(z;,3r;). Finally each of the balls
S(xj,5r;) has a nonempty intersection with G°.

Basically, the lemma says that it is possible to write GG as a nearly disjoint
countable union of balls each having a radius that is comparable to the
distance of its center to the boundary.

Proof. Suppose G is an open set in the plane of finite volume.

Let d(z) = d(z, G°) be the distance from = to G¢ or the boundary of G.
Let dy = sup,¢¢ d(z). Since the volume of G is finite, G cannot contain any
large balls and consequently dy cannot be infinite.

We consider balls S(z,r(x)) around z of radius r(x) = @. They are

contained in G and provide a covering of G as x varies over (G. All these
balls have the property that S(z,3r(x)) C G and S(x,5r(x)) intersects G°.
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We proceed to select a countable collection {S(x;, 7(x;))} from {S(z,r(z)}
that are disjoint while U;S(z;, 3r(x;)) = G.

We choose z; such that d(z;) > ©. Having chosen z1, . .., z, the choice of
Ty41 is made as follows. We consider the balls S(z;, r(z;)) fori =1,2,... k.
Look at the set Gy, = {z : S(z,r(x)) N S(z;,r(z;)) = 0 for 1 < i < k} and
define dy = sup,cq, d(v). We pick 41 € Gy such that d(zp41) > %’“. We
proceed in this fashion to get a countable collection of balls {S(z;,(z;))}.

By construction, they are disjoint balls contained in the set G of finite
volume and therefore r(x;) — 0 as i — oo. Since, d; < 2d(z;41) < 8r(wi11)
it follows that d; — 0 as i — oo. Every S(x;, 5r(z;)) intersects G°.

We now examine how much of G the balls { B(z;,7(x;))} cover. First we
note that
GoDG1 D+ DG DGk D+

We claim that NG, = 0. If not, let x € Gy for every k. Then d;, =
sup,cq, d(y) > d(x) > 0 for every k. This contradicts the convergence of dj,
to 0.

Since z € Gy = G, we can find k > 1 such that z € Gy_; but x ¢ Gj.
Then S(z,r(x)) must intersect S(xy,r(xy)) giving us the inequality

d(zy)
2

o] < r(a) () < D pr(a) < Blin(any) <

—|—7’(5L’k) = 3T(£L’k)

Clearly S(z,3r(xy)) will contain z. Since 3r(z) < d(z) the enlarged ball is
still within G. This means G = UgS(x, 3r(xy)).

Now we will bound the number of times a point x can be covered by
{S(xk,3r(xk)}. Let for some k, |x — zx| < 3r(zx). Then by the triangle
inequality

|d(x) — d(ax)| < 3r (k)

or equivalently (recall r(x) = @)

@) = rla)] < Sr(a)

This implies that for the ratio |TT’((;:) -1 < % we have i < TT’((;:) < g In

particular any ball S(xy,3r(xy)) that covers x, must have its center with in
a distance of 3r(zy) < 12r(z) of x and the corresponding r(z;) must be in
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the range 2r(z) < r(zy) < 4r(z). The balls S(xy, r(x))) are then contained
in S(z,24r(x)) are disjoint and have a radius of at least 2r(z). There can
be at most ki(d) = (42)? of them by considering the total volume. We can
choose our norm in R? to be max; |z;| and force the spheres to be cubes.

U

Proof of theorem. The proof is similar to the one-dimensional case with some
modifications.

1. We let Gy be the open set where the maximal function M(x) satisfies
|My(z)| > ¢. From the maximal inequality

uic < et (3.7)

2. We write G, = U;B; = U;S(x;,3r(z;)), a countable union of spheres
according to the lemma.

3. If we let
¢(x) = 1p,(x)
then 1 < ¢(z) < ki(d) on Gy.
4. Let us define a weighted average m; of f(y) on B; by

dy
/B (7w = mi s =0 (3.8)

and write

F() = F@)las(@) + —— 3 F@) s, (1)

¢(z) <
1
= lf(f)lG; (z) + ) z; milBi(x)] (3.9)
1
+ o) Zi:[f(l") m;|1p,(x)

= ho(x) + ) _ hi(x) (3.10)
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. For any sphere B; with center x; and radius 3r(z;) there is a sphere

with radius 5(r(z;)) with the same center that contains a point z} € G¢
with |My(x})| < ¢. The sphere B; = S(z},8r(x;)) contains B;. Since
1 < ¢(y) < ki(d) on G,

i< | [, S]], ]
)

1
< hald M(z/|f dy

_ §d
= ki(d)(3)

y)ldy < k»(d)

< ko(d)

— d
(B Elf(y)\ y
< ka(d) My (xf)
< ko(d)0

It follows that on G,
Zml B, (2) < ko(d)l

Moreover on G, |f(:c)| < My(z) < L. Since ko(d) > 1
|holloo < max{1, ko(d)} = ko(d)l (3.11)
On the other hand ¢(x) > 1 on G, and

1ol < [ f1lx + k2(d)€Zu[B

[f1lx + K2 (d)eu[G]

<
< (1 + ka(d)) | f1I1 (3.12)
and therefore
170[l5 < 1ol hollee < ks(d)2]| £l (3.13)
From the boundedness of T from L, to Lo this gives
Th
il [(Tho) )] > 0y < 000 < o) M5

where C' is the bound on |E| from (3.4)
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6. We now turn our attention to the functions {h,}

w(@) = 3n@) = 3 [ 1) - mike )
_ — M|k —Yy) — KT —x; i
-y / V) = milk(e —y) = bl 2] 725

W@l <Y [ 1) = millkz =)~ e - z)ldy (3.15)

7 )

We estimate |w(x)| for x ¢ U;U; where Uj; is the sphere with the same
center x; as B; but enlarged by a factor C' + 1. In particular if y € B;

and xz € U, then |y — x| > | — x| — |y — x| > Cly — x4].

/niUic jw(z)|de < ;/me[/Bi £ (y) — my||k(z — ) — k(z — z;)|dy]da
<37 [ 1) = mll [ 1k =) = bla = a0l daldy

(3.16)
where F; C {z: |x —y| > Cly — x;|}. Therefore,
|F(x —y) = k(z — 2;)|dx
E;

Ssup/ lk(z —y) — k(x — x;)|dx

Yt JS{z:e—y|>Cly—z;|}
<sup | k(= y) = b(x)lds

Y JA{zle—y|>Clyl}

(3.17)

<C

giving us the estimate
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/niUg jw(z)|de < Czi:/Bi F(y) — mildy
SC(Hle_'_[Sljpmi]Zlu[B

< C[If]lh + k2(d)p(Gy)]
< k3(d)|| f1l1]

7. We can estimate pu(U;U;)) < >°. u(U;) by

11l
ZM ) < ku(d ZM ) < ks(d)(Ge) < ke(d) 7

8. We put the pieces together and we are done.
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